GENERAL DYNAMICS Advanced Information Systems

Building a Nanofactory

Tihamer Toth-Fejel General Dynamics Advanced Information Systems <u>Tihamer.Toth-Fejel@gd-ais.com</u>

Radisson Hotel and Suites, Tucson, Arizona

http://www.crnano.org/conf2007.htm

Contents

Nomenclature Approach Taxonomies Molecular Building Blocks—The Nice and the Perfect Solid-Phase DNA Synthesis and Wang Cubes Tip Hyperarrays and Smart Pores Pixilated DNA Origami Templating Applications

Definition: Nanotechnology

Nanotechnology

- 1. The understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications.
- 2. Manipulation of matter at the atomic and molecular level to develop novel devices and productive nanosystems.

Note the difference in emphasis: properties vs. machines

Nomenclature: Nanotech Taxonomy

Nomenclature: Factory

Similarities

- Mass Production
- Interchangeable parts
- Input/Process/Output
- Positional Assembly
- Product and Process Design
- Layout/Control/Test
- Low cost

Differences

- Size
- Physical Properties
- Massive Parallelism
- Extreme Automation
- Additive assembly vs. Everything else

Nomenclature: Metrology

If you can't measure it, you can't make it.

- Accuracy
- Precision
- Reliability, Repeatability and Reproducibility
- Traceability, calibration
- Tolerance
- Surface finish
- Quality
- Interchangeability
- Statistical methods
- Hierarchical AMS and ATE from molecular level up

Nomenclature: 3-D Printers

Nanofactory Similarities Geometric freedom No tooling No waste No inventory No assembly Customization

Differences Resolution Orientation Types of inputs

Approach Taxonomies

How do we get there from here?

- Process
 - Assembling Atoms
 Synthesis
 Mechanosynthesis
 - Assembling Nanomodules
 Self-assembly
 - Directed Assembly
 - Error Correction
- Input Envelope
- Output Envelope

Mechanosynthesis

DCB6-Si dimer placement tool tip.

Self-Assembly

Anisotropically interacting particles and their assemblies

Conventional diblock copolymer and diblock copolymer attached to a nanocube

Self-Replication

Kinematic Cellular Automata

Chemical Industry 2020 Nanomaterials Roadmap: From Fundamentals to Function

Nanomaterials By Design A "library" of nanomaterial building blocks

- **Research Priorities**
- Nano-scale building blocks
- Design strategies for controlled assembly; spatially resolved nanostructures

Nice nanoscale building blocks

Orthogonal functionality1-10 nm diameter

Permits:

- nm x nm x nm Construction
- nm control of periodicity in 1, 2 or 3-D
- Multiple types of building blocks (e.g. conducting, nonconducting, p-type, ntype)

Silsesquioxane Nanocube core

Silsesquioxane Nanocube

Perfect nano building blocks

Face connection (not corner) Controllable enantiomeric and anisomorphic functionality Step-wise and hierarchical construction Arbitrary 3D structures **Connection properties** independent from electrical properties

G1 & G2 Silsesquioxane Nanocubes

Ideal G1 nanocubes

More realistic G1 nanocube

GENERAL DYNAMICS Advanced Information Systems

Realistic G2

Ideal G2

More Nanocube Requirements

- Inter-cubelet and intercube links must create and preserve desirable properties
- Consistent length of links
- Externally controllable connection chemistry
- Actuator Nanocubes

Solid Phase DNA Synthesis

Substrate (Solid Macro-scale Glass Support)

Step 1: De-blocking/ Deprotection Step 2: Activation Step 3: Base Condensation (Coupling) Step 4: Capping Step 5: Oxidation Repeat

Post-Synthesis Processing

2D Assembly Example

Given an arbitrary structure, how can complementary Wang tiles form them, and in what sequence should they be made?

2D Assembly Example

Connecting Nanocubes

Photochemical bonding

Zinc fingers

Pyrimidine photodimerization

Diels-Alder cycloaddition

GENERAL DYNAMICS

Advanced Information Systems

Molecular Actuators

Interlocking Rotaxane Dimers

Annulenes Azobenzene Poly calix[4]arene-bithiophene Viral Protein Linear (VPL) motors F0 and F1 motors of ATP synthase Myosin/actin DNA motors, walkers, and tweezers Phosgene-fueled triaminotriptycene/4-(dimethylamino)pyridine assembly

GENERAL DYNAMICS Advanced Information Systems Jimenez-Molero, Dietrich-Buchecker, and Sauvage, Chemically Induced Contraction and Stretching of a Linear Rotaxane Dimer, Chem. Eur. J. 2002, 8, No. 6

Nanocube Motors

Tip Arrays: Atomically Precise Manufacturing

- The ability to produce 3D structures with topdown control and atomic precision.
- The inevitable result of continued improvements in ultra-precision manufacturing (IC manufacturing and others)
- The proposed approach is an integration of known techniques and designed to produce a broadly applicable manufacturing process.

Tip Hyperarrays

Dip Pen
55,000 tips
Thermally actuated
Multiple inks
15 nm resolution
Fast

Smart Pores -> Smart Silkscreen

DNA Origami: 50 billion Smiley Faces

Paul W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, *Nature* Vol 440,16 March 2006

Courtesy Paul Rothemund

Easily reproducible

Qian Lulu, et al., Analogic China map constructed by DNA. Chinese Science Bulletin. Dec 2006. Vol. 51 No. 24

The DNA Origami Process

a.

C.

b.

d.

Figure a,b, and d from Paul Rothemund, Design of DNA origami, IEEE/ACM International Conference on Computer-Aided Design. Nov. 2005

GENERAL DYNAMICS Advanced Information Systems

Figure c by Toth-Fejel

Helper Strands

				-GAGATOTO	-CTAGGGG	C<
N /	» CAAGCTTG C	ATGCCTG.			SGATCOCC	G
11	slt9i) (slt8f			s3t8e	}
7 1	ATGTTGCA G	CACTGAC<			<tgggttg< th=""><th>A</th></tgggttg<>	A
-CGTTCTTT> >CGTCGTT	TTACAACGTC	GTGACTG	-GGAAAACC	- CTGGCGTT	-ACCCAAC	T>
<gcaagaaagcagcaa< th=""><th>A<</th><th></th><th>CCTTTTGG</th><th>GACCGCAA</th><th></th><th>$^{}$</th></gcaagaaagcagcaa<>	A <		CCTTTTGG	GACCGCAA		$^{}$
)	(
>TTGGGGTCTCGCTAT	T>		GGGGGATG	TGCTGCAA		/
-AACCCCAG< «AGCGATA	ATGCGGTCGA	COGCTTT	-CCCCCTAC	- ACGACGTT	-COGCTAA	Τ<
λ /	»ACGCCAGC T	GGCGAAA:			GOCGATT	A
11	slt10i) (sltl0f			s3t10g)
/ \	<cgtggcta g<="" th=""><th>CGGGAAG</th><th></th><th></th><th>GACTTAC</th><th>с</th></cgtggcta>	CGGGAAG			GACTTAC	с
-GGCACCTC> >AGAGGCC	CGCACCGATC	GOCCTTC	- CCAACAGT	- TGCGCAGC	-CTGAATG	G>
«COSTOGAGTCTCCGG	G<		GGTTGTCA	ACCOTCG		$^{\prime}$
$\neg \frown$		/			-	

GENERAL DYNAMICS

Advanced Information Systems

Detail from Paul W. K. Rothemund, *Nature* Vol 440,16 March 2006 ³¹

Helper Strands for Pixilated Origami

Regular Helper Strand (bit=0)

Labeled Helper Strand (bit=1)

Pixelated DNA Origami

GENERAL DYNAMICS Advanced Information Systems

courtesy Paul W. K. Rothemund

Pixelated DNA Origami

DNA Internal Labeling

GENERAL DYNAMICS

Advanced Information Systems

DNA-mediated Nanocube Assembly

DNA-mediated Multi-layered Nanocube Assembly

GENERAL DYNAMICS Advanced Information Systems

Patent Pending

NAND

•Not inherently limited to 2D

•Features ~ Bohr exiton radius

Hierarchical Assembly

Hierarchical Assembly: Polyominoes

Design-ahead: NanoEngineer-1

GENERAL DYNAMICS

Advanced Information Systems

Applications

Product Desirements Low cost High performance ► High value Nanostructure Manufacturing Capabilities Arbitrarily complex Heterogeneous Molecular precision Long-range order Bulk quantities

Pore nanocubes

PEM Fuel Cells

Extreme Broadband Reconfigurable Fragmented Aperture Phased Arrays

UV to Radio Wavelengths
High efficiency
Conformal and flexible

Pringle, et al. A Reconfigurable Aperture Antenna Based on Switched Links Between Electrically Small Metallic Patches. IEEE Trans Antennas & Propagation, V52N6, June 2004

Negative Index of Refraction Metamaterials

- Perfect lens with subwavelength resolution
- Unusual nanophotonic devices
- Optical Cloaking/Camouflage

D. Schurig, *et al.* Metamaterial Electromagnetic Cloak at Microwave Frequencies *Science* 314, 977 (2006);

Smolyaninov, et al., Magnifying Superlens in the Visible Frequency Range. Science 315, 1699-1701 (2007)

Inami, et al., Optical Camouflage Using Retro-Reflective 46 Projection Technology ISMAR 2003

Desktop Nanofactory Appliance

Molecular Printers, the Tragedy of Commons, Orwell, and Owning Air

Conclusion

Nanofactories are a tipping point in the industrial revolution
There are many approaches

Coming soon to your neighborhood

Tihamer.Toth-Fejel@gd-ais.com